Chloramben is an obsolete pre-emergence herbicide. It is highly soluble in water, volatile, mobile and has a tendency to leach to groundwater. It is not normally persistent in soil or water systems. It has a low mammalian toxicity but a high potential for bioaccumulation. It is a recognised irritant and there are concerns that it may be a developmental/reproduction toxicant. Chloramben has a low toxicity to birds and aquatic invertebrates but is moderately toxic to fish and honeybees.
Data alerts
The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.
Environmental fate
Ecotoxicity
Human health
Environmental fate High alert: GUS: High leachability; Drainflow: Mobile
Example manufacturers & suppliers of products using this active now or historically
Amchem Products
Bayer AG
Union Carbide
Example products using this active
Ornamental Weeder
Vegiben
Amiben
Formulation and application details
Supplied in a varaiety of formulations including granules, soluble liquids and powders.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
700
G4 G = Extension Toxicology network database EXTOXNET. Available online but no longer updated. (click here ) 4 = Verified data
High
Solubility - In organic solvents at 20 °C (mg l⁻¹)
172000
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Ethanol
-
233000
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Acetone
-
200
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Benzene
-
900
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Chloroform
-
Melting point (°C)
200
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
-
Boiling point (°C)
-
-
-
Degradation point (°C)
-
-
-
Flashpoint (°C)
-
-
-
Octanol-water partition coefficient at pH 7, 20 °C
P
7.94 X 1001
Calculated
-
Log P
1.9
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Low
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
-
-
-
Dissociation constant pKa) at 25 °C
3.4
DW4 DW = Don Wauchope personal database for Pka data: Wauchope, R. D. and Edwards, J. Dissociation constants for pesticide active ingredients: a database and comparison with predicted values. Dataset is no longer available. 4 = Verified data
-
Weak acid
Vapour pressure at 20 °C (mPa)
930
G4 G = Extension Toxicology network database EXTOXNET. Available online but no longer updated. (click here ) 4 = Verified data
Highly volatile. If applied directly to plants or soil, drift is a concern & mitigation is advisable
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
3.92 X 10-06
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Non-volatile
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
14
M4 M = GLEAMS Model database (Groundwater Loading Effects of Agricultural Management Systems). Dataset no longer available. 4 = Verified data
Non-persistent
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
Best available other data: DT₅₀ given as approximately 6 to 8 weeks (CA3)
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
0.25
R3 R = Peer reviewed scientific publications 3 = Unverified data of known source
Fast
Note
Rapid circa 6 hours
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
H3 H = The US ARS pesticide properties database. Dataset is no longer available. 3 = Unverified data of known source
Mobile
Koc (mL g⁻¹)
21
Notes and range
Other sources: Koc range 21-190 mL g⁻¹ (CA3)
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
3.07
Calculated
High leachability
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
1.64 X 10-01
Calculated
-
Note
-
Potential for particle bound transport index
Low
Calculated
-
Potential for loss via drain flow
Mobile
Calculated
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
Low risk
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Rat
Low
Mammals - Short term dietary NOEL
(mg kg⁻¹)
-
L2 L = Pesticide manuals and hard copy reference books / other sources 2 = Unverified data of unknown source
Rat 2 yr
-
(ppm diet)
10000
-
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Birds - Acute LD₅₀ (mg kg⁻¹)
4640
G4 G = Extension Toxicology network database EXTOXNET. Available online but no longer updated. (click here ) 4 = Verified data
Anas platyrhynchos
Low
Birds - Short term dietary (LC₅₀/LD₅₀)
-
-
-
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
-
-
-
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
-
-
-
Soil micro-organisms
-
-
-
Collembola
Acute LC₅₀ (mg kg⁻¹)
-
-
-
Chronic NOEC (mg kg⁻¹)
-
-
-
Non-target plants
-
-
-
-
-
-
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
14.5
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Moderate
Chronic
-
-
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Beneficial insects (Ladybirds)
-
-
-
Beneficial insects (Lacewings)
-
-
-
Beneficial insects (Parasitic wasps)
-
-
-
Beneficial insects (Predatory mites)
-
-
-
Beneficial insects (Ground beetles)
-
-
-
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242