The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement. These hazard alerts do not take account of usage patterns or exposure, thus do not represent risk.
Environmental fate
Ecotoxicity
Human health
 
Ecotoxicity Moderate alert: Fish acute ecotoxicity: Moderate
Warning: Significant data are missing
Human health High alert: Mammals acute toxicity: High; Reproduction/development effects
GENERAL INFORMATION
Description
A highly toxic, inorganic compound used historically as a pesticide
Example pests controlled
Rodents including rats, mice, squirrels, moles, prairie dogs; Insects including ants and cockroaches
Example applications
Non-cropped areas such as farm buildings
Efficacy & activity
-
GB regulatory status
GB COPR regulatory status
Not approved
Date COPR inclusion expires
Not applicable
GB LERAP status
No UK approval for use in pest control
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Not approved
Dossier rapporteur/co-rapporteur
Not applicable
Date EC 1107/2009 inclusion expires
Not applicable
EU Candidate for substitution (CfS)
Not applicable
Listed in EU database
Yes
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
 
 
 
 
 
 
 
 
 
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
 
 
 
 
 
 
 
 
 
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
 
 
 
 
 
 
 
 
 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
Disrupts essential cellular processes including pyruvate kinase and succinate dehydrogenase
CAS RN
7446-18-6
Alternative/old CAS RN
14012-92-1; 37333-30-5; 87993-82-6
EC number
231-201-3
CIPAC number
-
US EPA chemical code
-
PubChem CID
24833
Molecular mass
504.83
PIN (Preferred Identification Name)
thallium(I) sulfate
IUPAC name
thallium(I) sulphate
CAS name
dithallium(I) sulphate
Forever chemical
-
Highly Hazardous Pesticide (HHP)
Yes [
C1 Criterion 1: Pesticide formulations that meet the criteria of classes Ia or Ib of the WHO Recommended Classification of Pesticides by Hazard
;
C4 Criterion 4: Pesticide active ingredients and their formulations that meet the criteria of reproductive toxicity Categories 1A and 1B of the Globally Harmonized System on Classification and Labelling of Chemicals (GHS)
]
Other status information
Heavy metal; Subject to the provisions of the UK Poisons Act 1972
Relevant Environmental Water Quality Standards
-
Herbicide Resistance Class (HRAC MoA class)
Not applicable
Herbicide Resistance Class (WSSA MoA class)
Not applicable
Insecticide Resistance Class (IRAC MoA class)
Not applicable
Fungicide Resistance Class (FRAC MOA class)
Not applicable
Examples of recorded resistance
-
Physical state
Colourless, odourless crystalline solid
Commercial
Property
Value
Availability status
Obsolete; Banned in most countries
Introduction & key dates
1861, thallium discovered; 1920s, introduced as a pesticide; 1940s-19502, usage peaked; 1991, cancelled US
Example manufacturers & suppliers of products using this active now or historically
-
Example products using this active
-
Formulation and application details
Formulated into baits such as grain mixtures, syrups
Commercial production
Thallium sulphate is commercially produced by reacting thallium(I) oxide or thallium(I) carbonate with sulfuric acid, yielding a soluble white crystalline salt. This process is typically carried out in controlled industrial settings due to the compound’s extreme toxicity. The reaction is straightforward and exothermic, requiring careful temperature regulation and containment to prevent environmental release or worker exposure.
Impact on climate of production and use
-
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C at pH 7 (mg l⁻¹)
-
-
-
Solubility - In organic solvents at 20 °C (mg l⁻¹)
-
-
-
Melting point (°C)
632
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
-
Boiling point (°C)
-
-
-
Degradation point (°C)
-
-
-
Flashpoint (°C)
-
-
-
Octanol-water partition coefficient at pH 7, 20 °C
P
-
-
-
Log P
-
-
-
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
-
-
-
Dissociation constant pKa) at 25 °C
-
-
-
-
Vapour pressure at 20 °C (mPa)
-
-
-
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
-
-
-
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
-
-
-
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
-
-
-
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Sediment phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
-
-
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
-
-
-
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
Cannot be calculated
-
-
Note
-
Potential for particle bound transport index
-
-
-
Potential for loss via drain flow
-
-
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
-
-
-
CT₅₀ (days)
-
-
Known metabolites
None
ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
7.0
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242