Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z
Search
Support
Edit history
Purchasing and licensing
NEW
- New support docs available
- Newsletter Aug 2025
- User survey
Aminosidine
Last updated: 15/09/2025
(Also known as: amminosidin ; paromomycin; hydroxymycin; aminosidine I; paramomycin)

GENERAL INFORMATION
Description
A broad-spectrum aminoglycoside antibiotic drug
Examples of veterinary uses
Used to treat various bacterial infections including colibacillosis and salmonellosis
Examples of species treated
Cattle; Pigs; Chickens; Dogs
Approval status
VMR 2013/2033 approval status (GB/UK)
Not approved
EU Regulatory approval status
Not approved
Chemical structure
Isomerism
Aminosidine exhibits stereoisomerism, specifically optical isomerism, due to its multiple chiral centres. As an aminoglycoside antibiotic, its structure includes several sugar-like rings (hexoses and pentoses) with hydroxyl and amino groups attached at various positions. Each of these rings contains carbon atoms bonded to four different substituents, making them chiral centres. While aminosidine is typically used in a single stereoisomeric form for therapeutic purposes, the presence of these chiral centres means that diastereomers and enantiomers are theoretically possible, though not all are biologically active or produced.
Chemical formula
C₂₃H₄₅N₅O₁₄
Canonical SMILES
C1C(C(C(C(C1N)OC2C(C(C(C(O2)CO)O)O)N)OC3C(C(C(O3)CO)OC4C(C(C(C(O4)CN)O)O)N)O)O)N
Isomeric SMILES
C1[C@H]([C@@H]([C@H](C([C@H]1N)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)N)OC3[C@@H]([C@@H]([C@H](O3)CO)O[C@@H]4[C@@H]([C@H]([C@@H]([C@@H](O4)CN)O)O)N)O)O)N
International Chemical Identifier key (InChIKey)
UOZODPSAJZTQNH-QGSSWKKLSA-N
International Chemical Identifier (InChI)
InChI=1S/C23H45N5O14/c24-2-7-13(32)15(34)10(27)21(37-7)41-19-9(4-30)39-23(17(19)36)42-20-12(31)5(25)1-6(26)18(20)40-22-11(28)16(35)14(33)8(3-29)38-22/h5-23,29-36H,1-4,24-28H2/t5-,6+,7+,8-,9-,10-,11-,12+,13-,14-,15-,16-,17-,18?,19-,20-,21-,22-,23+/m1/s1
2D structure diagram/image available?
Yes
General status
Veterinary substance type
Antibiotic, Antiparasitic, Antibacterial, Medicinal drug, Antiprotozoal
Substance groups
Oligosaccharide
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Natural
Mode of action
Has bactericidal properties and inhibits protein synthesis in susceptible bacteria at the 30S ribosomal unit
Molecular targets
[30S ribosomal protein S10, Antagonist], [16S rRNA, Antagonist]
CAS RN
7542-37-2
EC number
231-423-0
CIPAC number
-
US EPA chemical code
-
PubChem CID
165580
Therapeutic Class
Alimentary tract & metabolism: Intestinal antiinfectants
ATCvet Code
QA07AA06
Controlled Drug?
No
Regulation 37/2010 MRL Classification
Allowed substance (Table 1: All food producing species)
Molecular mass
615.63
PIN (Preferred Identification Name)
-
IUPAC name
(2S,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-[(2R,3S,4R,5S)-5-[(1R,2R,3S,5R,6S)-3,5-diamino-2-[(2S,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol
CAS name
O-2,6-diamino-2,6-dideoxy-β-L-idopyranosyl-(1→3)-O-β-D-ribofuranosyl-(1→5)-O-[2-amino-2-deoxy-α-D-glucopyranosyl-(1→4)]-2-deoxy-D-Streptamine
Forever chemical
-
Other status information
-
Relevant Environmental Water Quality Standards
-
Physical state
Solid
Commercial
Property
Value
Availability status
Considered obsolete but may be available in some countries
Introduction & key dates
Circa 1960, anti-leishmanial activity demonstrated
Example manufacturers & suppliers of products using this active now or historically
  • Olon S.p.A Italy
  • Wuxi Fortune Pharmaceutical China
Example products using this active
  • Crestomycin
Formulation and application details
Usually formulated as tablets, injectables, or feed additives
Commercial production
Aminosidine is produced through a microbiological fermentation process using the actinomycete Streptomyces rimosus var. paromomycinus. The organism is cultivated in a nutrient-rich medium, typically containing sources of carbon (like glucose), nitrogen, and essential minerals, under carefully controlled conditions of temperature, aeration, and pH. During fermentation, the microorganism biosynthesises aminosidine as a secondary metabolite. After sufficient incubation, the culture broth is harvested and subjected to filtration to remove biomass. The antibiotic is then extracted from the filtrate using solvent extraction or ion-exchange chromatography, followed by purification steps such as crystallization to isolate the sulphate salt form. The final product is dried and milled into a pharmaceutical-grade powder.
Impact on climate of production and use
As microbial-based products tend to use fermentation-based production processes rather than chemical synthesis, they typically have a lower fossil fuel input in formulation and active ingredient creation, and also have reduced downstream emissions due to biodegradability and minimal soil disruption, their life-cycle GHG emissions are expected to be low. Whilst hard and precise data is not available, broad estimates suggest that typically emissions are likely to be below 5 kg CO₂e/kg.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
- - -
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
- - -
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
- - -
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Refractive Index
- - -
Environmental release
Substance may enter the environment via the faeces of treated animals or by leaching from spilt medicated feed.
Degradation
Property
Value
Source; quality score; and other information
Interpretation
Soil degradation (days) (aerobic)
DT₅₀ (typical)
- - -
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
Note
-
Manure DT₅₀ (days)
- - -
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
- - -
Bio-concentration factor
BCF (l kg⁻¹)
- - -
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 10000
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
Rat
Low
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
- - -
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹ dw soil)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹ dw soil)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
Vegetative vigour ER₅₀ (g ha⁻¹)
- - -
Seedling emergence ER₅₀ (g ha⁻¹)
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
503
R4 R = Peer reviewed scientific publications
4 = Verified data
Daphnia magna
Low
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic Plants (free-floating, fonds growth, fresh) - 7 day (mg l⁻¹)
- - -
Aquatic plants (rooted, growth rate, fresh) - 14 day (mg l⁻¹)
- - -
Algae - Acute (growth rate, fresh; mg l⁻¹)
- - -
Algae - Chronic (growth rate, fresh; mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
High (class III) - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
> 10000
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
Rat
Low
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
Subcutaneous LD₅₀ = 1010 mg kg⁻¹
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
Rat
-
Intravenous LD₅₀ = 156 mg kg⁻¹
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
Rat
-
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
Mammalian dose elimination route and rate
Excreted primarily in the faeces if administered orally but almost exclusively in the urine following parental treatment
A5 A = EU regulatory and evaluation data as published by EC, EFSA (RAR, DAR & Conclusion dossiers), EMA (e.g. EU Annex III PIC DGD) (EU - Pesticides database; EFSA Scientific Publications )
5 = Verified data used for regulatory purposes
-
Health issues
Specific human health issues (hazard-based)
Carcinogen
Genotoxic
Endocrine disruptor
No data found
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E0 E = Unspecified genotoxicity type (miscellaneous data source)
0 = No data
No data found
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
Yes, known to cause a problem
No data found No data found
Respiratory tract irritant Skin irritant Skin sensitiser
Yes, known to cause a problem
Yes, known to cause a problem
No data found
Eye irritant Phototoxicant  
Yes, known to cause a problem
No data found  
General human health issues
Possible kidney and liver toxicant
May cause gastrointestinal problems
Handling issues
Property
Value and interpretation
General
No information available
CLP classification 2013
-
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
aminosidine
French
paromomycine
German
-
Danish
-
Italian
-
Spanish
paromomicina
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 15/09/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242