Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z
Search
Support information
Edit history
Purchasing and licensing
NEW
User survey
Ractopamine hydrochloride
Last updated: 20/03/2024
(Also known as: ractopamine HCl)

GENERAL INFORMATION
Description
A substance often used as a feed additive to promote performance. Now banned in many countries including the EU & china.
Availability status
Current; Banned in many countries
Introduction & key dates
-
Examples of veterinary uses
Once used for its economic and performance benefits - increasing rate of body mass gain, improving feed efficiency, and increasing carcass leanness
Examples of species treated
Pigs; Cattle; Turkeys
Approval status
VMR 2013/2033 approval status (GB/UK)
Not approved
EU Regulatory approval status
Not approved
Chemical structure
Isomerism
The technical material is a mixture of 4 stereoisomers. It is the RR-form of ractopamine is the most biologically active isomer.
Chemical formula
C₁₈H₂₄ClNO₃
Canonical SMILES
CC(CCC1=CC=C(C=C1)O)NCC(C2=CC=C(C=C2)O)O.Cl
Isomeric SMILES
-
International Chemical Identifier key (InChIKey)
JHGSLSLUFMZUMK-UHFFFAOYSA-N
International Chemical Identifier (InChI)
InChI=1S/C18H23NO3.ClH/c1-13(2-3-14-4-8-16(20)9-5-14)19-12-18(22)15-6-10-17(21)11-7-15;/h4-11,13,18-22H,2-3,12H2,1H3;1H
2D structure diagram/image available?
Yes
General status
Veterinary substance type
Feed additive; Animal growth promotor
Substance groups
Phenethanolamine
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Synthetic
Mode of action
A phenolethanolamine beta-adrenoceptor agonist
Molecular targets
[Beta-adrenergic receptor, Agonist]
CAS RN
90274-24-1
EC number
415-170-5
CIPAC number
-
US EPA chemical code
-
PubChem CID
14010333
Therapeutic Class
-
ATCvet Code
None allocated
Controlled Drug?
No
Regulation 37/2010 MRL Classification
Banned in the EU & UK
Molecular mass
337.8
PIN (Preferred Identification Name)
-
IUPAC name
4-[3-[[2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]butyl]phenol;hydrochloride
CAS name
-
Other status information
-
Relevant Environmental Water Quality Standards
-
Physical state
-
Related substances & organisms
Formulations
Property
Product
Manufacturer
Authorisation Route
Legal Class (GB/UK)
Example products (past and present) using this active
- - - -
Formulation and application details
Often formulated as a medicated feed additive
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
31000
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
High
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
163.9
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
-
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
- - -
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
Max absorbance at 225.8nm=463 and 277.6nm=93
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
-
Surface tension (mN m⁻¹)
- - -
Refractive Index
- - -
Environmental release
Substance may enter the environment via the urine of treated animals or by leaching from spilt medicated feed.
Degradation
Property
Value
Source; quality score; and other information
Interpretation
Soil degradation (days) (aerobic)
DT₅₀ (typical)
1.1
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Non-persistent
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
Note
-
Manure DT₅₀ (days)
- - -
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
0.009
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Non-persistent
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
26.7
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Slightly mobile
Koc (mL g⁻¹)
2265
Notes and range
USEPA data: Kd range 14.5-36.0 mL g⁻¹, Koc range 2007-2698 mL g⁻¹, Soils=3
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
0.03 Calculated Low leachability
Bio-concentration factor
BCF (l kg⁻¹)
6.3
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Low potential
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
- - -
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
- - -
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
- - -
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
5.44
P3 P = Other non-EU, UK or US Governments and Regulators
3 = Unverified data of known source
Lepomis macrochirus
Moderate
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
34.5
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Daphnia magna
Low
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic plants - Acute 7 day EC₅₀, biomass (mg l⁻¹)
- - -
Algae - Acute 72 hour EC₅₀, growth (mg l⁻¹)
> 101.2
P4 P = Other non-EU, UK or US Governments and Regulators
4 = Verified data
Selenastrum carpicornutum
Low
Algae - Chronic 96 hour NOEC, growth (mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
- - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
- - -
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
> 2.8
P3 P = Other non-EU, UK or US Governments and Regulators
3 = Unverified data of known source
Rat 4 hr
-
Other Mammal toxicity endpoints
Intraperitoneal LD₅₀ = 367 mg kg⁻¹
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment )
3 = Unverified data of known source
Rat
-
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
Mammalian dose elimination route and rate
Rapidly emininated via the urine
Q3 Q = Miscellaneous data from online sources
3 = Unverified data of known source
-
Health issues
Specific human health issues
Carcinogen
Genotoxic
Endocrine disruptor
XNo, known not to cause a problem
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E3 E = Unspecified genotoxicity type (miscellaneous data source)
3 = Negative
No data found
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
?Possibly, status not identified
No data found No data found
Respiratory tract irritant Skin irritant Skin sensitiser
Yes, known to cause a problem
?Possibly, status not identified
Yes, known to cause a problem
Eye irritant Phototoxicant  
?Possibly, status not identified
No data found  
General human health issues
May cause skeletal muscle tremors and behavioural changes
May cause cardiovascular effects
Handling issues
Property
Value and interpretation
General
Not compatible with oxidising agents
Will produce irritating and toxic gases if heated to decomposition
Corrosive
CLP classification 2013
-
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
ractopamine hydrochloride
French
-
German
-
Danish
-
Italian
-
Spanish
-
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 20/03/2024
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242