(Also known as: allethrin; esbiol; esdeballethrin; esbiothrin)
SUMMARY
Bioallethrin is an insecticide. It has a low aqueous solubility, is volatile and would not normally be expected to leach to groundwater. It is moderately persistent in soil and, under certain conditions, could be persistent in water. It is moderately toxic to mammals, is an endocrine disrupter and an eye irritant. Bioallethrin is highly toxic to fish but less so to birds and honeybees.
Data alerts
The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.
Environmental fate
Ecotoxicity
Human health
Environmental fate Moderate alert: Potential for particle bound transport: Medium
Warning: Significant data are missing
Ecotoxicity High alert: Fish acute ecotoxicity: High; Daphnia acute ecotoxicity: High
Human health High alert: Endocrine disrupter
GENERAL INFORMATION
Description
A pyrethroid ester insecticide used mainly in domestic situations
Example pests controlled
House flies; Mosquitoes; Wasps; Hornets; Cockroaches
Example applications
Houses; Officies and industrial sites
Efficacy & activity
-
Availability status
Current
Introduction & key dates
1969, introduced
UK regulatory status
UK COPR regulatory status
Not approved
Date COPR inclusion expires
Expired
UK LERAP status
No UK approval for use
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Not approved
Dossier rapporteur/co-rapporteur
Not applicable
Date EC 1107/2009 inclusion expires
Expired
EU Candidate for substitution (CfS)
Not applicable
Listed in EU database
Yes
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
 
 
 
 
 
 
 
 
 
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
 
 
 
 
 
 
 
 
 
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
 
 
 
 
 
 
 
 
 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
ISIceland
NONorway
 
 
 
 
 
 
 
 
 
Additional information
Also used in
Australia
Chemical structure
Isomerism
A mixture of two allethrin stereoisomers (1R,trans;1R and 1R,trans;1S) in an approximate ratio of 1:1, where both isomers are active ingredients
Example manufacturers & suppliers of products using this active now or historically
Scotts
Farnam Co
Sumitomo Chemical Co. Ltd.
Example products using this active
Bioallethrin
D-Trans
Formulation and application details
The usual formulations include aerosols and sprays, usually with synergists.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
4.6
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Low
Solubility - In organic solvents at 20 °C (mg l⁻¹)
Miscible
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Acetone
-
Miscible
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Ethanol
-
Miscible
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Toluene
-
Miscible
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Hexane
-
Melting point (°C)
Not applicable
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
-
Boiling point (°C)
168
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
-
Degradation point (°C)
-
-
-
Flashpoint (°C)
87
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
(closed cup)
-
Octanol-water partition coefficient at pH 7, 20 °C
P
4.79 X 1004
Calculated
-
Log P
4.68
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
High
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
1.01
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
-
Dissociation constant pKa) at 25 °C
-
-
-
-
Vapour pressure at 20 °C (mPa)
43.9
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Highly volatile. If applied directly to plants or soil, drift is a concern & mitigation is advisable
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
2.89
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Moderately volatile
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
32
L2 L = Pesticide manuals and hard copy reference books / other sources 2 = Unverified data of unknown source
Moderately persistent
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
Best available data
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
-
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
-
Note
Degraded by UV light
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
Stable
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Stable
Note
Stable at pH 5 to pH 7: DT₅₀ 4.3 days at pH 9
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
V1 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 1 = Estimated data with little or no verification
Non-mobile
Koc (mL g⁻¹)
9500
Notes and range
Estimated
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
0.03
Calculated
Low leachability
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
5.35 X 10-03
Calculated
-
Note
-
Potential for particle bound transport index
Medium
Calculated
-
Potential for loss via drain flow
Non-mobile
Calculated
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
1897
F2 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 2 = Unverified data of unknown source
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
6.85
R3 R = Peer reviewed scientific publications 3 = Unverified data of known source
Apis mellifera
Moderate
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Chronic
-
-
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Beneficial insects (Ladybirds)
-
-
-
Beneficial insects (Lacewings)
-
-
-
Beneficial insects (Parasitic wasps)
-
-
-
Beneficial insects (Predatory mites)
-
-
-
Beneficial insects (Ground beetles)
-
-
-
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
0.024
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Lepomis macrochirus
High
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
-
-
-
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
A0 A = Chromosome aberration (EFSA database) 0 = No data
;
B0 B = DNA damage/repair (EFSA database) 0 = No data
;
C0 C = Gene mutation (EFSA database) 0 = No data
;
D0 D = Genome mutation (EFSA database) 0 = No data
;
E0 E = Unspecified genotoxicity type (miscellaneous data source) 0 = No data
✓Yes, known to cause a problem
Reproduction / development effects
Acetyl cholinesterase inhibitor
Neurotoxicant
No data found
XNo, known not to cause a problem
XNo, known not to cause a problem
Respiratory tract irritant
Skin irritant
Skin sensitiser
?Possibly, status not identified
?Possibly, status not identified
No data found
Eye irritant
Phototoxicant
 
✓Yes, known to cause a problem
No data found
 
General human health issues
May cause lung congestion US EPA - weak evidence to suggest possible human carcinogen Endocrine issues - Inhibition of estrogen-sensitive cells proliferation
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242