Top Environmental Fate Ecotoxicology Human Health Translations
Home
A to Z
Search
Support
Edit history
Purchasing and licensing
NEW
- New support docs available
- Newsletter Aug 2025
- User survey
Amlodipine 2-phthalimide
Last updated: 14/09/2025
(Not known by any other names)

GENERAL INFORMATION
Description
A veterinary and human drug used to slow the heart beat and relax blood vessel walls
Examples of veterinary uses
Typically used to treat secondary hypertension caused by hyperthyroidism, diabetes, kidney disease or cardiomyopathy.
Examples of species treated
Cats; Dogs
Approval status
VMR 2013/2033 approval status (GB/UK)
Not approved
EU Regulatory approval status
Not approved
Chemical structure
Isomerism
Amlodipine 2-phthalimide is a synthetic derivative of amlodipine, modified by attaching a phthalimide group to the amlodipine scaffold, typically at the 2-position of the dihydropyridine ring. This compound retains the chiral centre found in amlodipine, meaning it exhibits enantiomeric isomerism: the molecule exists as two forms, (R)- and (S)-amlodipine 2-phthalimide. The (S)-enantiomer is generally more pharmacologically active. The addition of the phthalimide group may also introduce conformational isomerism, as the bulky aromatic ring can influence the spatial orientation of the molecule, potentially affecting its binding affinity and metabolic stability.
Chemical formula
C₂₉H₂₉ClN₂O₇
Canonical SMILES
CCOC(=O)C1=C(NC(=C(C1C2=CC=CC=C2Cl)C(=O)OCC)COCCN3C(=O)C4=CC=CC=C4C3=O)C
Isomeric SMILES
-
International Chemical Identifier key (InChIKey)
NTVITRUDLZBADK-UHFFFAOYSA-N
International Chemical Identifier (InChI)
InChI=1S/C29H29ClN2O7/c1-4-38-28(35)23-17(3)31-22(25(29(36)39-5-2)24(23)20-12-8-9-13-21(20)30)16-37-15-14-32-26(33)18-10-6-7-11-19(18)27(32)34/h6-13,24,31H,4-5,14-16H2,1-3H3
2D structure diagram/image available?
Yes
General status
Veterinary substance type
Medicinal drug: Vasodilator agent
Substance groups
Dihydropyridine
Minimum active substance purity
-
Known relevant impurities
-
Substance origin
Synthetic
Mode of action
Amlodipine slows the rate at which calcium moves into the heart and blood vessel walls. Calcium channel blocker.
Molecular targets
[Voltage-dependent L-type calcium channel subunit alpha-1C, Inhibitor], [Voltage-dependent calcium channel subunit alpha-2/delta-1, Inhibitor], [Voltage-dependent L-type calcium channel subunit beta-2 , Inhibitor], [Voltage-dependent L-type calcium channel subunit alpha-1D, Inhibitor]
CAS RN
140171-49-9
EC number
-
CIPAC number
-
US EPA chemical code
-
PubChem CID
11157139
Therapeutic Class
Lipid modifying agent: HMG CoA reductase inhibitors, other combinations
ATCvet Code
QC10BX11
Controlled Drug?
No
Regulation 37/2010 MRL Classification
-
Molecular mass
553.0
PIN (Preferred Identification Name)
-
IUPAC name
diethyl 4-(2-chlorophenyl)-2-[2-(1,3-dioxoisoindol-2-yl)ethoxymethyl]-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate
CAS name
-
Forever chemical
-
Other status information
-
Relevant Environmental Water Quality Standards
-
Physical state
-
Related substances & organisms
Commercial
Property
Value
Availability status
Mainly used for research
Introduction & key dates
1986, first approved USA
Example manufacturers & suppliers of products using this active now or historically
  • Simson Pharma Limited
Example products using this active
  • Not available commercially
Formulation and application details
Typically supplied as a crystalline powder for research
Commercial production
Amlodipine 2-phthalimide is synthesised as a protected intermediate in the production of amlodipine. The process begins with the condensation of a substituted benzaldehyde (typically 2-chlorobenzaldehyde), a beta-ketoester, and ethyl 3-amino-4-(2-phthalimidoethoxy)crotonate via a Hantzsch-type reaction to form the 1,4-dihydropyridine ring system. The phthalimide group serves as a protecting moiety for the amino functionality, preventing unwanted side reactions during ring formation. After the reaction is complete, the product is purified, often by crystallization or solvent extraction, to yield amlodipine 2-phthalimide as a stable solid.
Impact on climate of production and use
Published GHG data is not available for most pharmaceuticals. However, according to industry, global averages suggest producing 1 kg of a typical active pharmaceutical ingredient can range from 10 to 100 kg CO₂e for small molecule drugs and potentially up to 1000 kg CO₂e for complex biologicals such as vaccines, depending on the drug type, its formulation, complexity of synthesis, solvent recovery, and energy sources used.
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
- - -
Solubility - In organic solvents at 20 °C (mg l⁻¹)
- - -
Melting point (°C)
- - -
Boiling point (°C)
- - -
Degradation point (°C)
- - -
Flashpoint (°C)
- - -
Octanol-water partition coefficient at pH 7, 20 °C
P
- - -
Log P
- - -
Fat solubility of residues
Solubility
- - -
Data type
- - -
Density (g ml⁻¹)
- - -
Dissociation constant pKa) at 25 °C
- - -
-
Vapour pressure at 20 °C (mPa)
- - -
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
- - -
Volatilisation as max % of applied dose lost
From plant surface
- - -
From soil surface
- - -
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
- - -
Surface tension (mN m⁻¹)
- - -
Refractive Index
- - -
Environmental release
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
Soil degradation (days) (aerobic)
DT₅₀ (typical)
- - -
DT₅₀ (lab at 20 °C)
- - -
DT₅₀ (field)
- - -
DT₉₀ (lab at 20 °C)
- - -
DT₉₀ (field)
- - -
Note
-
Manure DT₅₀ (days)
- - -
Aqueous photolysis DT₅₀ (days) at pH 7
Value
- - -
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
- - -
Note
-
Water-sediment DT₅₀ (days)
- - -
Water phase only DT₅₀ (days)
- - -
Sediment phase only DT₅₀ (days)
- - -
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
- - -
Koc (mL g⁻¹)
-
Notes and range
-
Freundlich
Kf (mL g⁻¹)
- - -
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
- - -
Bio-concentration factor
BCF (l kg⁻¹)
- - -
CT₅₀ (days)
- -
Known metabolites

None

ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
37
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
Mouse as besylate variant
High
Mammals - Short term dietary NOEL
(mg kg⁻¹)
- - -
(ppm diet)
- -
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
- - -
Birds - Acute LD₅₀ (mg kg⁻¹)
- - -
Birds - Short term dietary (LC₅₀/LD₅₀)
- - -
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
- - -
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹ dw soil)
- - -
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹ dw soil)
- - -
Soil micro-organisms
- - -
Collembola
Acute LC₅₀ (mg kg⁻¹)
- - -
Chronic NOEC (mg kg⁻¹)
- - -
Non-target plants
Vegetative vigour ER₅₀ (g ha⁻¹)
- - -
Seedling emergence ER₅₀ (g ha⁻¹)
- - -
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Chronic
- - -
Notes
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
- - -
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
- - -
Mode of exposure
-
Beneficial insects (Ladybirds)
- - -
Beneficial insects (Lacewings)
- - -
Beneficial insects (Parasitic wasps)
- - -
Beneficial insects (Predatory mites)
- - -
Beneficial insects (Ground beetles)
- - -
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Fish - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Temperate Freshwater Aquatic invertebrates - Chronic 21 day NOEC (mg l⁻¹)
- - -
Tropical Freshwater Aquatic invertebrates - Acute 48 hour EC₅₀ (mg l⁻¹)
- - -
Aquatic crustaceans - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Acute 96 hour LC₅₀ (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, static, water (mg l⁻¹)
- - -
Sediment dwelling organisms - Chronic 28 day NOEC, sediment (mg kg⁻¹)
- - -
Aquatic Plants (free-floating, fonds growth, fresh) - 7 day (mg l⁻¹)
- - -
Aquatic plants (rooted, growth rate, fresh) - 14 day (mg l⁻¹)
- - -
Algae - Acute (growth rate, fresh; mg l⁻¹)
- - -
Algae - Chronic (growth rate, fresh; mg l⁻¹)
- - -
Mesocosm study data
NOEAEC mg l⁻¹
- - -
NOEAEC mg l⁻¹
- - -
Marine bivalves
- - -
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
- - -
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
37
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
Mouse as besylate variant
High
Mammals - Dermal LD₅₀ (mg kg⁻¹ body weight)
- - -
Mammals - Inhalation LC₅₀ (mg l⁻¹)
- - -
Other Mammal toxicity endpoints
- - -
ADI - Acceptable Daily Intake (mg kg⁻¹ bw day⁻¹)
- - -
ARfD - Acute Reference Dose (mg kg⁻¹ bw day⁻¹)
- - -
AAOEL - Acute Acceptable Operator Exposure Level (mg kg⁻¹ bw day⁻¹)
- - -
AOEL - Acceptable Operator Exposure Level - Systemic (mg kg⁻¹ bw day⁻¹)
- - -
Dermal penetration studies (%)
- - -
Dangerous Substances Directive 76/464
- - -
Exposure Routes
Public
-
Occupational
-
Mammalian dose elimination route and rate
Heptic metabolism. Renal excretion accounts for approx. 60% administered. The remainder is eliminated in bile and faeces.
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID )
3 = Unverified data of known source
-
Health issues
Specific human health issues (hazard-based)
Carcinogen
Genotoxic
Endocrine disruptor
No data found
A0 A = Chromosome aberration (EFSA database)
0 = No data
;
B0 B = DNA damage/repair (EFSA database)
0 = No data
;
C0 C = Gene mutation (EFSA database)
0 = No data
;
D0 D = Genome mutation (EFSA database)
0 = No data
;
E0 E = Unspecified genotoxicity type (miscellaneous data source)
0 = No data
No data found
Reproduction / development effects Acetyl cholinesterase inhibitor Neurotoxicant
?Possibly, status not identified
No data found No data found
Respiratory tract irritant Skin irritant Skin sensitiser
Yes, known to cause a problem
Yes, known to cause a problem
No data found
Eye irritant Phototoxicant  
Yes, known to cause a problem
No data found  
General human health issues
May cause swelling of ankles or feet
May cause difficult or laboured breathing
Possible liver & heart toxicant
Handling issues
Property
Value and interpretation
General
Will release toxic gases if heated to decomposition
Slightly flammable. May combust at high temperatures
CLP classification 2013
Health: H301, H318, H373
Environment: H400, H410
WHO Classification
Not listed (Not listed)
UN Number
-
Waste disposal & packaging
-
Shelf-life, storage, stability and reactivity
-
TRANSLATIONS
Language
Name
English
amlodipine 2-phthalimide
French
-
German
-
Danish
-
Italian
-
Spanish
-
Greek
-
Polish
-
Swedish
-
Hungarian
-
Dutch
-
Norwegian
-

Record last updated: 14/09/2025
Contact: aeru@herts.ac.uk
Please cite as: Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242